3,995 research outputs found

    PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks

    Full text link
    Unsupervised text embedding methods, such as Skip-gram and Paragraph Vector, have been attracting increasing attention due to their simplicity, scalability, and effectiveness. However, comparing to sophisticated deep learning architectures such as convolutional neural networks, these methods usually yield inferior results when applied to particular machine learning tasks. One possible reason is that these text embedding methods learn the representation of text in a fully unsupervised way, without leveraging the labeled information available for the task. Although the low dimensional representations learned are applicable to many different tasks, they are not particularly tuned for any task. In this paper, we fill this gap by proposing a semi-supervised representation learning method for text data, which we call the \textit{predictive text embedding} (PTE). Predictive text embedding utilizes both labeled and unlabeled data to learn the embedding of text. The labeled information and different levels of word co-occurrence information are first represented as a large-scale heterogeneous text network, which is then embedded into a low dimensional space through a principled and efficient algorithm. This low dimensional embedding not only preserves the semantic closeness of words and documents, but also has a strong predictive power for the particular task. Compared to recent supervised approaches based on convolutional neural networks, predictive text embedding is comparable or more effective, much more efficient, and has fewer parameters to tune.Comment: KDD 201

    A Robust Zero-point Attraction LMS Algorithm on Near Sparse System Identification

    Full text link
    The newly proposed l1l_1 norm constraint zero-point attraction Least Mean Square algorithm (ZA-LMS) demonstrates excellent performance on exact sparse system identification. However, ZA-LMS has less advantage against standard LMS when the system is near sparse. Thus, in this paper, firstly the near sparse system modeling by Generalized Gaussian Distribution is recommended, where the sparsity is defined accordingly. Secondly, two modifications to the ZA-LMS algorithm have been made. The l1l_1 norm penalty is replaced by a partial l1l_1 norm in the cost function, enhancing robustness without increasing the computational complexity. Moreover, the zero-point attraction item is weighted by the magnitude of estimation error which adjusts the zero-point attraction force dynamically. By combining the two improvements, Dynamic Windowing ZA-LMS (DWZA-LMS) algorithm is further proposed, which shows better performance on near sparse system identification. In addition, the mean square performance of DWZA-LMS algorithm is analyzed. Finally, computer simulations demonstrate the effectiveness of the proposed algorithm and verify the result of theoretical analysis.Comment: 20 pages, 11 figure

    GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding

    Full text link
    Learning continuous representations of nodes is attracting growing interest in both academia and industry recently, due to their simplicity and effectiveness in a variety of applications. Most of existing node embedding algorithms and systems are capable of processing networks with hundreds of thousands or a few millions of nodes. However, how to scale them to networks that have tens of millions or even hundreds of millions of nodes remains a challenging problem. In this paper, we propose GraphVite, a high-performance CPU-GPU hybrid system for training node embeddings, by co-optimizing the algorithm and the system. On the CPU end, augmented edge samples are parallelly generated by random walks in an online fashion on the network, and serve as the training data. On the GPU end, a novel parallel negative sampling is proposed to leverage multiple GPUs to train node embeddings simultaneously, without much data transfer and synchronization. Moreover, an efficient collaboration strategy is proposed to further reduce the synchronization cost between CPUs and GPUs. Experiments on multiple real-world networks show that GraphVite is super efficient. It takes only about one minute for a network with 1 million nodes and 5 million edges on a single machine with 4 GPUs, and takes around 20 hours for a network with 66 million nodes and 1.8 billion edges. Compared to the current fastest system, GraphVite is about 50 times faster without any sacrifice on performance.Comment: accepted at WWW 201

    MEMS-Based Micro-heat Pipes

    Get PDF
    Micro-electro-mechanical systems (MEMS)-based micro-heat pipes, as a novel heat pipe technology, is considered as one of the most promising options for thermal control applications in microelectronic circuits packaging, concentrated solar cells, infrared detectors, micro-fuel cells, etc. The operating principles, heat transfer characteristics, and fabrication process of MEMS-based micro-grooved heat pipes are firstly introduced and the state-of-the-art of research both experimental and theoretical is thoroughly reviewed. Then, other emerging MEMS-based micro-heat pipes, such as micro-capillary pumped loop, micro-loop heat pipe, micro-oscillating heat pipe, and micro-vapor chamber are briefly reviewed as well. Finally, some promising and innovatory applications of the MEMS-based micro-heat pipes are reported. This chapter is expected to provide basic reference for future researches
    • …
    corecore